lunes, 21 de noviembre de 2011

Producción de biodiesel y captura de CO2 de una planta eléctrica convencional.

Durante el debate sobre la reducción de gases carbónicos de efecto invernadero se han propuesto diversas teorías y tecnologías que pueden llegar a reducir el impacto de los combustibles fósiles.

Un ejemplo de esto es la propuesta de secuestrar los gases de combustión de estaciones termoeléctricas. Se ha propuesto que el CO2 que normalmente es emitido a la atmósfera sea inyectado en los mantos subterráneos del fondo de los océanos.

En el periodo de transición que probablemente veremos entre las energías del futuro (renovables, fusión, etc) y las tecnologías con las que contamos actualmente, quizás podemos proponer soluciones que nos permitan eficientar y optimizar las tecnologías con las que contamos actualmente.

Una de estas soluciones es utilizar biorreactores de algas que pueden depurar una parte importante del CO2 de las plantas termoeléctricas para producir los aceites que son la materia prima para fabricar biocombustibles como el biodiesel.

Estos biocombustibles generalmente no contribuyen significativamente a añadir más carbono al ciclo de carbono si su producción está bien gestionada.[1]

Biorreactores con configuraciones similares han sido utilizados satisfactoriamente de forma comercial para la producción de lípidos de algas que se usan en la industria de los alimentos.



[1] Ejemplos para no seguir: El bioetanol que se produce en EE.UU. a base de maíz con un balance energético muy pobre y la deforestación en Indonesia durante la producción de aceite de palma para la producción de biodiesel

martes, 15 de noviembre de 2011

Wastewater treatment in the food industry and mitigating climate change

All across the world, in every kind of environment and region known to man, increasingly dangerous weather patterns and devastating storms are abruptly putting an end to the long-running debate over whether or not climate change is real. Not only is it real, it's here, and its effects are giving rise to a frighteningly new global phenomenon: the man-made natural disaster.

President Barack Obama

Wastewater treatment in the food industry and mitigating climate change

Consumers have driven the food market to produce higher quality products, get rid of dangerous pesticides such as DDT, and produce organic and naturally grown foods. As this proactive trend continues well into the 21st century, it is becoming the norm that companies will have to be carbon neutral. An entire new corporate culture regarding the mitigation and off-set of greenhouse gas net emissions is becoming a reality.

The key to offset and mitigate climate change is to reduce our dependency on fossil fuels and to use renewable energy alternatives that will not contribute greenhouse gases to the carbon cycle. This can be achieved with cost-effective technologies and it is where anaerobic wastewater treatment comes into play.

The core advantage of using anaerobic wastewater treatment is that it allows us to produce biogas (typically 65% methane). In many food industry applications, biogas is burnt and utilized to produce heat or electricity that will not increase greenhouse gas net emissions, and reduces operating costs at the wastewater treatment plant and at the production facility.

lunes, 14 de noviembre de 2011

The biorefinery concept


There is a great deal of talk about renewable energy production. And, as in many other production processes efficiency is a key parameter to success.

Many have proposed the idea of biofuel production in the context of a biorefinery.

Within a biorefinery biomass feedstocks and their valuable byproducts can be processed efficiently through physical, biological and chemical unit operations.

It is comparable to an oil refinery where many petrochemical products are recovered. These products could range from basic cattle feed to complex chemicals for industry.

Production processes used to produce biofuels such as bioethanol, biohydrogen, biodiesel, biogas can help produce byproducts such as glycerol, citric acid, lactic acid, isopropanol, vitamins, fibers and adhesives.

Many third generation biofuels like bioethanol from lignocellulosic feedstock could be theoretically produce more economically if those byproducts are also thrown to the mix.

The key is to produce the renewable energy that we need in a sustainable way. An almost zero-emission goal should be implemented where waste streams, water, and heat from one process can be utilize as feed streams or energy for the next.

In conclusion, the biorefinery concept can help us reach a zero emission biofuel production and it can also help the economics of the projects by commercializing valuable byproducts and by integrating productions streams to make them more efficient.